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Abstract. The time-dependent problem of multidimensional Fokker-Planck equations 
(FPE), satisfying potential conditions, is solved in the weak noise limit. For the relaxation 
from an intrinsically unstable state to the metastable state, we apply the theory of the R 
expansion of the Green function and reveal the possibility of dimensional reduction. From 
a metastable state to the stationary state, the time-dependent problem of the FPE is reduced 
to linear master equations. The first passage times are given explicitly. 

1. Introduction 

Dissipative systems under the influence of noise are often modelled by Fokker-Planck 
equations (FPE) [l-31. In particular, the FPE is extensively used to describe systems 
far from equilibrium and has attracted much attention in recent years [2-61. In most 
systems of practical interest, the noise represented by the diffusion term of the FPE 

can be considered as a small perturbation. Thus, the problem of how the systems by 
the FPE in the weak noise limit (or, say, the thermodynamic limit) turns out to be one 
of the most active fields of the last two decades. 

In the study of the time-dependent problem of the FPE, the SZ expansion theory 
(OET) [5,6] and the scaling theory (ST) [7,8] are well known. The OET is successful 
in describing the evolution of the system from an extensive region to a stable state 
while failing in the region near an unstable point [5,8,9]. The ST is remarkable in 
characterising the evolution from a one-peak distribution to a two-peak one, starting 
from an unstable point while it has some trouble with the matching between various 
time regimes [7-91. 

In [9-111 we suggested an approach of linearising the drift force in the initial time 
regime followed by the SZET of the Green function to elucidate the whole process from 
an intrinsically unstable state to the metastable state ( LSZEGF). 

Nevertheless, as far as the time-dependent problem of the FPE is considered, we 
took into account, in all the references listed previously, only one-dimensional FPE. 
Apart from the simplest examples, e.g. the Ornstein-Uhlenbeck processes [ 121, the 
time-dependent problem of multidimensional FPE is poorly understood. Recently, 
several publications by Graham et a1 have considered the stationary solution of the 
multidimensional FPE without detailed balance in the weak noise limit [13-171. The 
aim of the present paper is to extend the LOEGF approach developed for the one- 
dimensional FPE to the multidimensional and multistable FPE. 
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In this paper, we consider only the FPE with detailed balance, i.e. the FPE satisfying 
the potential conditions [18,19]. Then the stationary solution of the FPE involved is 
assumed to be known explicitly. Throughout the presentation the weak noise limit is 
taken. In 0 2 we apply the L ~ E G F  to the two-dimensional FPE and clarify the evolution 
from an intrinsically unstable state to the metastable state. In § 3, the first passage 
time and the process from a metastable state to the final stationary state is elucidated. 
The last section extends the theory to general q-dimensional FPE. 

2. From an unstable state to the metastable state 

2.1. Model 

We first study the two-dimensional FPE in detail. Assume that the system can be 
modelled by the FPE 

M x ,  y,  t ) l a t  = -(a/ax)[c,(x, Y)P(X, Y ,  t ) l -  (d/ay)[c,(x, Y)P(X, Y ,  t ) I  

+ ( & / 2 ) ( a 2 / a x 2 + a Z / a Y 2 ) P ( x ,  Y ,  t )  (2.1) 

where all the parameters, as well as the variables, are assumed to be dimensionless 
after a suitable rescaling. Moreover, we have 

E<< 1. 

For the sake of simplicity and clarity, the diffusion matrix is set to unity. Since the 
FPE satisfies the potential conditions, the planar vector should be constrained by 

ac,/ay = ac,/ax. 

P(X, Y )  = N exp[-u(x, Y ) l & l  
Thus, the stationary solution of (2.1) can be worked out as 

with N being a normalisation constant and u(x, y )  being given by 

aulax = -2c, au lay  = - 2 ~ ~ .  (2.4) 

du(x, y) /dt  < 0 (2.5) 

x = Cl(X, Y )  3 = c2(x, U). (2.6) 

It is well known that U (x, y )  decreases monotonically: 

as it is evolved by the corresponding deterministic equations: 

Hence, u(x, y ) ,  the so-called potential, takes extreme values at all the singular points 

c,(xi, yi) = c2(xi, yi) = O  i =  1,2 , .  . ., n. 

In particular, it takes minimal values at the attracting points of (2.6) and maximal 
values at the repellors. Moreover, the potential has a local saddle about the saddles 
of (2.6). In this section we study the initial-value problem of a system, starting from 
a delta function about the origin, an unstable point of (2.6), 

P(X, y,  0) = S(X - a&)S(y - b&) (2.7) 

with a and b being finite. 
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2.2. The LREGF 

In the initial time regime, a major portion of probability centres on the vicinity of the 
origin. Thus, the drift force of (2.1) can be linearised. Moreover, the two directions 
of the eigenvectors of the linear part of the vector field can be set, after a suitable 
transformation, along the x and y axes, respectively. Finally, the FPE with linearised 
drift is 

M X ,  Y ,  t ) / a t  = -(a/ax)[A,xP(x, Y ,  [ ) I  - (a/aY)[A,YP(x, Y ,  t ) l  
+ ( E / 2 ) ( a 2 / a X 2 + a 2 / a Y 2 ) P ( X ,  Y ,  t )  A , , A 2 > 0 .  (2.8) 

The solution of the Ornstein-Uhlenbeck process can be directly written down as 

p(x, y ,  t )  = ( A l A 2 / { 7 r 2 ~ 2 [ 1  -exp(2A,t)][l - e ~ p ( 2 A ~ t ) ] ) ” ~  

x exp{A,[x - U& exp(A, t ) ] * / ~ [  1 - exp(2Al t)] 

+ A 2 [ y -  b& exp(A2t)12/~[1 -exp(2A2t)]}. (2.9) 

exp(2A,t), exp(2A2t)<< 1 / ~  (2.10) 

In the initial time regime 

the solution (2.9) is a good approximation of the actual evolution of (2.1). In the case 
of 

exp(2AIt), exp(2A2t) >> 1 (2.11) 

x 2 + y 2  = O( E )  

most of the probability flows out of the unstable region 

and then the S ~ E T  of the Green function is desirable [9,11]. Since E << 1, we may readily 
find a suitable time t ,  satisfying 

1 / ~  >>exp(2Alt,), exp(2A2t,) >> 1 (2.12) 

when the linearisation of the drift, as well as the S ~ E T  of the Green function, hold 
simultaneously. Provided the probability distribution at time t, is a delta function 

P(X, Y,  = S(x -xs)S(Y - Y J  ( 2 . 1 3 ~ )  

lxsl, I Y S I  >> E. (2.13 6 )  
(The condition (2.136) guarantees that the distribution is far away from the unstable 
point and the S ~ E T  works.) The solution given by the S ~ E T  is 

p(x,y, t )  =exp{ -[T- T(t)]a-’[T’- T(t)’]/2~)[27r~/det(c+)l’’~]-’ (2.14) 

where T and T(t) are two-dimensional vectors: 

T = ( x , y )  T(t) = (x( t ) ,  Y ( t ) )  (2.15) 

and T, T (  t )  are their transpositions, respectively. a is a matrix: 

(2.16) 

(2.17) 
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(2.18) 

(2.19) 

dx, dy, exp{A,[x, - U& exp(A, t , ) ] ’ /~(  1 - exp(2A1 t,) 

+A2[y,-  b& exp(A2t,)]’/~(1 -exp(2A2t,) 

- [ T - T (  t)]a-’[ T - T (  t)]/2&}. (2.20) 

According to the previous discussion, the actual solution of (2.1) can be represented 
by (2.9) as t < t ,  and (2.20) as t > t,. It is interesting to point out that the integral 
(2.20) enjoys a remarkable property. I t G  right not only in the time regime t > t ,  but 
also in the initial time regime t < t,. In [ l l ] ,  in the one-dimensional case, we have 
shown, by careful verification, that the integral (2.20) leads to (2.9) as t <  t,. In the 
two-dimensional case, the calculation procedure and the conclusion are exactly the 
same. In fact, the distribution given by (2.20) even turns back into the delta function 
(2.7) as t -  r s +  - ts .  

Thus, equation (2.20) provides the evolution of (2.1) from an intrinsically unstable 
state to the metastable state in the weak noise limit. The problem of solving two- 
dimensional FPE is reduced to the much simpler problem of solving the corresponding 
ordinary differential equations with the same dimension. 

2.3. Reduction of dimension 

Around the unstable state, at the origin, there might be several potential wells. Accord- 
ing to (2.20), different potential wells may eventually gain different amounts of probabil- 
ity. A problem of practical importance is how much probability each potential well 
eventually obtains. It seems that there is no direct answer other than the detailed 
calculation of (2.20), which is still not easy, being completed. Fortunately, equation 
(2.20) may enjoy a further substantial simplification in the limit E << 1. 

Let us suppose A l  > A,. Hence, the probability diffusion along the x axis must be 
faster than along the y axis. As t increases, the ratio of the diffusion distance in the 
x direction to that in the y direction becomes larger. In the case of 

1 / ~  >>exp(2Alt) >>exp(2A2t), 1 (2.21) 

the evolution is still in the initial time regime while the probability distribution turns 
out to be a very long thin strip along the x axis. In contrast, the extension of the 
distribution along the y axis is rather narrow, compared with the x axis, and can be 
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neglected. Thus, the distribution, to a good approximation, can be regarded as one- 
dimensionally distributed. Actually, the distribution will follow the most unstable 
manifold. Moreover, out of the linear regime, the  ET plays its role and then the 
probability peak will follow the deterministic path. This path must be the most unstable 
manifold since the preparation of the distribution in the linear regime is on that 
manifold. 

Now the answer to the previous question is clear. So long as the distribution starts 
from an intrinsically unstable state (i.e. a and b in (2.7) are finite or zero), only the 
potential wells (at most, two) directed by the most unstable manifold, that is tangent 
to the x axis at the origin, may eventually gain finite amounts of probability. The 
probabilities obtained by all other potential wells are negligibly small. The final 
probability distribution is almost irrelevant to the initial coordinate b. However, the 
parameter a is important for the metastable state. As t +. 00, the amount of probability 

0 

p + =  { dv exp(-v2/2) / J2r  
- a  

(2.22a) 

is contained by the potential well directed by the most unstable manifold of the positive 
x axis, and the remaining amount 

- a  

P-= dv exp(-v2/2) / J2r  (2,226) 

is gained by the negative one. 
Assuming that the most unstable manifold can be specified by 

Y = d(x) (2.23) 

we may further reduce (2.18) to a one-dimensional ordinary differential equation: 

X ( t )  = Cl{(X(t), 44x(t)l} (2.24) 

that can be explicitly solved, and then U,,, a.,, follow (cf (2.17)). U,.. may be provided 
in terms of x(r), U,, and U).. Finally, the integrand of (2.20) is given. The entire 
time-dependent problem from an unstable state to the metastable state is analytically 
settled. Usually, the problem of specifying the most unstable manifold is much easier 
than that of generally solving two-dimensional differential equations. Therefore, the 
reduction of dimension has a practical meaning. In particular, if the dimension q of 
the FPE is more than 2, the reduction of dimension from q > 2  to one may reduce 
greatly the difficulty of the calculations. 

In some cases, the most unstable manifold can be readily presented, though an 
explicit solution of (2.18) is not available. Let us consider a two-box diffusion Schlog 
model. The drift may be specified as [20,21] 

(2.55) 

where the parameter d is introduced to represent the spatial diffusion. Here, we are 
not interested in the physical implication of the model, but focus our attention on 
solving the corresponding FPE. It is obvious that no explicit time-dependent solution 
of (2.18) can be found. The potential u ( x ,  y)  is 

(2.26) U (x, y ) = [ rx’ + ry2 - x4/2 - y4/2 - d (x - y )’I. 
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As r > 3 4  the origin is an unstable point and there are four potential wells around the 
origin, which centre on the stable points 

x1 = y1 = J r  (2.27 a )  

x2 = y2 = - J r  (2.27b) 

x3 = -ys = J ( r  -2d)  ( 2 . 2 7 ~ )  

x4 = -y4 = -J( r - 2d)  (2.27d) 

respectively. All these stable points can be connected with the origin by certain 
deterministic trajectories. About the origin, the linearisations of (2.18) are 

w = rw S = ( e  -2d)s  (2.28) 

with 

s = J 2 ( x  - y) /2  w = J 2 ( x  + y)/2. 

It is evident that the most unstable manifold is tangent to 

s = x - y = o  (2.29) 

at the origin. A remarkable property of (2.25) is that the curve (2.29) is invariant even 
in the non-linear region of (2.18). On the most unstable manifold (2.18) may be 
reduced to exactly 

(2.30) a( t )  = rx( t) - x(  t) Y(t) = x ( t )  

of which the solution is 

dx/(rx - x’) = t - t,. r‘) 
uxx, u.vy and uxy can be written directly in terms of x(  t). Thus, the integrand of (2.20) 
is explicit. 

The introduction of this fluctuation makes the FPE substantially different from the 
corresponding kinetic equations. Let us assume an experiment. Randomly release 
balls one by one in the & vicinity of the origin. Each time the ball is evolved by the 
kinetic equations (2.6) (the vector field is assumed to be (2.25)) and may fall into one 
of four basins (cf (2.27)), according to the initial position. After many tests, one may 
certainly find that comparable amounts of balls have been received by all the four 
wells. In contrast, doing the same thing while replacing the balls and the kinetic 
equations by various delta functions and the FPE, respectively, one may find almost 
nothing in the wells x = -y = id( r - 2d). A major portion of probability is gained by 
the wells x = y = *Jr.  In fact, the final probability distribution is 

p ( s ,  w, 00) = N exp(-s2/2.p2){exp[-(w -J;)’/2~p,]+exp[-(w + J ; ) 2 / 2 ~ ~ l I )  

with 

(2.31) 

PI = u,, ,~ = &r/2(2r - d)’ P2=csss=(r-d)P1/r 

and 

N = 1/4?~&(p,p~)”~.  
The total probability is eventually equally divided by the two basins x = y = *r. 
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If the initial delta function is prepared as 

a = O  Ibl+O 

according to the kinetic equations, the state finally realised must be the stable state 
directed by the invariant manifold tangent to the y axis. However, according to the 
FPE, only the stable states directed by the manifold tangent to the x axis can be realised 
as A ,  > A 2  > 0. This highly unexpected behaviour is caused by the fluctuation. 

Now an essential point should be mentioned. In (2.20), there are two unstable 
modes about the unstable point (the origin), the most unstable mode plays a key role. 
It wins the competition in the vicinity of the unstable point and then completely governs 
the system in the subsequent evolution. It leads to the reduction of the dimension 
involved. This intuitive picture reminds us the slaving principle in synergetics theory 
[ 2 , 3 ] .  However, there are two substantial differences between these two cases. First, 
the slaving principle emphasises that the slow unstable modes control fast stable modes. 
In our case all modes are unstable. Our conclusion is that the most unstable mode 
controls other unstable modes (as well as stable modes) and determines the destiny 
of the FPE system. Second, so far as the adiabatic elimination of the fast modes is 
performed, one usually treats the evolution slightly over a bifurcation threshold, 
0 < A i  << 1, where Ai are the eigenvalues of the unstable modes. In the present treatment, 
we are able to deal with the situations far beyond the threshold. 

2.4. Several scaling relations 

In 0 2.3, we predicted that, starting from an intrinsically unstable state, a major portion 
of probability must flow asymptotically into the wells directed by the most unstable 
manifold of the unstable point. How can one alter this destination and distribute 
comparable probabilities into other wells? 

Consider a probability peak initially located at the origin. Following (2.20), the 
probability distribution can develop to a distance &exp(A,t) away along the x axis 
from the origin. As 

r = -In ~ / 2 h ,  (2.32) 

the diffusion distance along the x axis reaches a macroscopic quantity. In order that 
the diffusion along the y axis reaches a macroscopic quantity as well as T (so that the 
probability may be comparably distributed in the various wells), we require 

exp(A2r) = O(l/&) or exp[(A,-A2)7]=0(1). (2.33) 

Thus, in the case of 

A ,  - A 2  >> -2A, / ln  E (2.34) 

the initial value problem of the FPE may enjoy the reduction of dimension from two 
to one. In the opposite case 

A , - A 2 < <  -2Al/ln E (2.35) 

the difference A ,  - A 2  plays no role and the problem may be treated as if A ,  = A 2 .  In 
the intermediate situation 

A ,  - A 2  = 0 ( - 2 A , / l n  E )  (2.36) 
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all the wells connected with the origin by certain invariant manifolds may gain 
comparable probabilities and meanwhile the difference A ,  - A z  does influence the 
distribution of probability in various potential wells. In all the last two cases, the 
reduction of dimension fails. 

Besides (2.36), there is one more scaling relation. Provided the initial probability 
peak is such that a = 0, b # 0, at time 7 = -( 1/2A,) In E the probability distribution 
flows up to a macroscopic distance along the x axis. In order that finite quantities of 
probability are eventually obtained by the wells directed by the less unstable manifold, 
it is required that 

b& exp(Az.r) = O(eXp(A,T)) 

leading to 

or 

yo = b& = O( E ~ J ” ~ ) .  

Thus, we have 

1 >> y ,  >> & 

in the case that 

(2.37) 

are satisfied. Under the condition 

b << & - ( A , - A 2 ) / 2 A l  (2.38) 

the reduction of dimension is desirable and the most unstable manifold is prevalent; 
under the opposite condition 

b >> E - ( A l - A 2 ) / 2 A ,  (2.39) 

the fluctuation plays no role and the system can be regarded as completely evolved 
by the deterministic equations. In the intermediate situation (2.37), one can make 
neither the reduction of dimension nor the neglect of the fluctuation, and an essential 
two-dimensional fluctuated system should be taken into account. The scaling relations 
(2.34) and (2.38) provide the conditions under which the reduction of dimension can 
be enjoyed. 

3. From a metastable state to the stationary state 

Equation (2.20) represents the evolution of the probability distribution, governed by 
the FPE, from t = 0 to t + CO. However, the state asymptotically realised is merely a 
metastable state. In the present section we will study the process from a metastable 
state to the final stationary state, i.e. study the probability transitions between various 
potential wells. 
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In order to calculate the transition rates between different deterministic stable states, 
let us keep in mind that the time needed for the evolution from an unstable state to 
the metastable state (order of -In E )  is negligibly short, in comparison with the time 
for the metastable state (order of exp(l /e)) .  It leads to an assumption: in a metastable 
state, the density distributions in each potential well are proportional to the stationary 
probability distribution. Thus, in the entire time regime of the metastable state, the 
stationary distribution is kept unchanged locally, though the probability transitions 
from one well to another do proceed all the time so long as the probability balance 
between various basins are not established. Moreover, probability may be transported 
from one basin to another only by crossing the potential barrier between them. Our 
second assumption is that, in the weak noise limit, the probability transition between 
any two wells is mainly due to the saddle, connected with both wells, for which the 
potential is minimal along the entire barrier. The reason for the second assumption 
is transparent. Provided u ( D )  is the potential of the given saddle while u ( R )  is that 
of any point on the barrier, the conditions u ( D )  < u ( R )  and E < <  1 lead to 

PR = N e x p [ - u ( R ) / ~ ] < <  PD = N exp[-u(D)/s]. 

Therefore, in comparison with the probability transition through the vicinity of the 
saddle, those through other parts of the barrier are negligibly small. 

3.1. The first passage time 

Assume again that the origin is at the saddle point, for which the potential is minimal 
along the barrier between two wells A (in region x > 0) and B (in region x < 0). Without 
losing generality we further assume that the unstable manifold of the saddle is along 
the x axis and the stable one is along the y axis. The initial distribution is such that 
B is filled by an amount of probability p ( t )  while A is empty. Let us study the 
probability transition flow from B to A. 

About the saddle, the FPE (2.1) can be reduced to 

and the initial probability distribution takes the form 
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Employing both (3.2) and (3.3), we have 
o m  

dxo dY0 A x ,  Y ,  t)p(xo, Y o ,  to) 
P ( X ,  Y ,  t )  = I-, I-, 

0 

=  to) I-, dx~rl~/(.?rE{exp[2rl,(t - to) - 11})11/2exp(rl~xi/E) 

x e x ~ [ r l ~ { x - x o e x ~ [ r l ~ ( t - t ~ ) I } ~ / ( ~ { 1  -exp[2rll(t- t o ) ] ) ) ]  

XI-, dYO[rl~(.?rE{1 -exp[-2v2(t- to)1})11/2exp(-rl,y2/E) 
oc 

x exP[7?2{Y -Yo exP[-7?2(f - to)l12/(4exP[-2r12(t - t o ) l -  1})1. 

exp( - 1 / E ) >> t - to >> 1 

(3.5) 

(3.6) 

In the time interval 

equation (3.5) gives rise to 

p ( x ,  Y ,  t )  = N ( t ~ ) ( d . ? r s ) ’ / ’  exp(-r12y2/~) 
0 

(dxo/&) exp(-x~+2fixxOl&).  I-* 
(3.7) 

In the exponent of the integrand of (3.7) we neglect the term of x2 since only the 
behaviour close to the origin is relevant to the probability transition. A remarkable 
feature of (3.7) is that after a long enough time ( t  - to>> 1) the discontinuity of the 
distribution at t = to on x = 0 is ruled out. However, the time is still short enough 
( t  - to<< exp( 1/ E ) )  to keep the amount of probability in B unchanged (N(  to)  can be 
replaced by N ( t ) ) .  One more feature of (3.7) is that the distribution is independent 
of t. The result is reasonable as well as instructive. After a short transient process, 
the density distribution as well as the flow about the saddle turns out to be stable. It 
is just what happens for a liquid flow from a large vessel though a small hole. Indeed 
this is a good picture for the FPE in the weak noise limit. Hence, in the following we 
shall use t instead of to .  

Inserting (3.7) into (3.1) and integrating both sides of (3.1) over -oo<x<O, and 
--CO < y < CO, we have 

which yields 

dp,( t ) /dt  = -N( t)(771~/ . i r )”2/2.  (3.9) 
In the weak noise limit, the probability distribution in basin B can be well approximated 
by a Gaussian distribution 

m a- m 

P d f )  = M ( t )  d s  d s  {-, dw exP[-u(B)l& -Pl(B)s2/E -P2(B)W2/E1 

= . ? r ~ ( t ) ~  ~~P[-~(B)/EI/(P~(B)P~(B))-”~ (3.10) 

where P,(B) and P2(B) are the two eigenvalues of the linear part of the drift on B. 
Comparing (3.2) and (3.10) we have 

~ ( t )  = M ( t )  exp[-u(O, o) /sI  = ( P ~ ( B ) P ~ ( B ) ) ” ’  e x p [ ( u ( ~ )  - ~ ( 0 ,  o ) ) / E ] P ~ ( ~ ) / ~ T E .  
(3.11) 
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Finally, equation (3.9) is specified as 

dpB(t)/dt = -RBAPB(~) 
R B A =  [ P ~ ( B ) P ~ ( B ) T , / ~ ~ ~ ~  exp[(u(B) - u ( o , o ) ~ / E ] .  (3.12) 

In general, both potential wells A and B may contain probability simultaneously. 
Therefore, equation (3.12) should be generalised to 

dpB(t)/dt = -RBGPB(~)+ RABPA(~) 

d ~ ~ ( t ) / d t  = - R A B P A ( ~ )  + R B A P B ( ~ )  
(3.13) 

where R A ,  is exactly the same as R B A  with P,(B),  P2(B)  and u(B) replaced by 
Pl(A),  &(A) and u(A), respectively. The mean first passage time is given by the 
Kramers escape rates as 

TAB = ~ / ( R A B +  RBA). (3.14) 
It is, indeed, of order exp(l /s) .  It is worth remarking that T A B  is irrelevant to - v2 ,  
the negative eigenvalue of the linear part of the vector field on the saddle. 

The problem of the first passage time has been discussed extensively (cf [ l ]  and 
references therein). Here, we extend the study to the two-dimensional problem based 
on the two intuitive assumptions. In case of the one-dimensional FPE our result (3.12) 
and (3.14) recovers the well known form of the first passage time. 

3.2. Probability balance equations 

Suppose kinetic equations (2.6) have n attractors, A , .  . . , A. The potential must have 
n basins, each centred on an attractor. Then the general probability balance equations 
are 

(3.15) 

R,  is given by (3.12) with u(0,O) replaced by u(D,). D, is the saddle connecting both 
Ai and Aj ,  and has minimal potential among all the saddles of such kind. Rij is set 
to be zero if no saddle connects Ai and Aj.  

Equations (3.15) are linear master equations which can be analytically solved or 
discussed. Based on (2.20) and (3.15), the evolution of the system, governed by the 
FPE, from an intrinsically unstable state up to the final stationary state can be entirely 
clarified. 

4. The extension to q-dimensional FPE 

An extension of all the previous procedures to the q-dimensional problem is direct. 
Suppose the FPE 

a p ( x ,  t ) / a t =  - i (a/axi)[ci(x)p(x, t )1+(&/2)  i (a2/axf)p(x, t )  
h = l  i = l  

(4.1) 
x = (XI  , x* , * * . , xq ) 

has a stationary probability distribution 
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the origin is assumed to be an extremum of the potential. Moreover, the linearisations 
of the kinetic equations about the origin have the forms of 

1, = A,x, (4.3) 

with 

A 1  > A,>  A , > .  . . > A ,  h1>O. 

The initial probability distribution is 
4 

p ( x ,  0) = n: 6(x, -a,&). 
1 = 1  

Now equation (2.20) can be generalised to 

- [x  - ~ ( t ) ] c + - ~ ( t ) [ ~ ’ - ~ ( t ) ’ ] / 2 ~  n dxi I‘ i = l  
(4.4) 

where x’ and x( t)’ are the transpositions of x and x( t ) ,  respectively. x( t )  can be solved 
from the deterministic equations 

% ( t )  = cJx( t ) l  (4.5) 
with the initial conditions 

XI(t,) = xzs i = 1 , 2  , . . . ,  9. 

The elements of the matrix u( f )  are given by 

U I I  = 2ac,/ax,crl,, + 1 

UIJ = ac,/ax,aJJ +ac,/ax,u,, + (ac,/ax, +acJ/axJ)a, i > j  

whence the deterministic equations (4.5) are solved and the matrix follows. Con- 
sequently, the integrand of (4.4) is explicit. Therefore the problem of solving a 
q-dimensional FPE is reduced to that of solving q-dimensional ordinary differential 
equations. The latter is, of course, much easier than the former. 

Starting from an intrinsically unstable state (i.e. a, = O( l) ,  i = q, 2, . . . , q ) ,  the 
problem may be further simplified, as stated in § 2.3. Up to the metastable state, the 
system is controlled by the most unstable manifold and the dimension of the kinetic 
equations involved can be reduced from q to one! On the most unstable manifold, 
we have 

x,( t )  =f;[x1(t)I i = 2, . . . , q. 

The trajectory is produced by 

dXl(t)ldt  = c , [x , ( t ) , f2(x , ) ,~(x , ) ,  . . ’ ,fq(XI)l (4.6) 
which yields the integrand of (4.4) analytically. 

For q-dimensional FPE, we can also obtain two kinds of scaling relations analogous 
to (2.34) and (2.38) under which the reduction of dimension from q to one is available. 
Here we do  not repeat the similar description. 
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For the evolution from a metastable state to the stationary distribution, all equations 
(3.9)-(3.15) can be used except that R,  is replaced by 

1/2 

~ i j = (  v = l  fi [ ( P u ( A ~ ) / ( ~ ~ & ) I )  ( 7 7 , & / r ) 1 ’ 2 e x p { [ u ( ~ i ) - u ( ~ i j ) 1 / & }  

(4.7) 

with v1 being the positive eigenvalue of the linear part of the vector field on the saddle 
D, which connects the two stable points Ai and Ai and has the minimal potential 
along the barrier between the two wells. 

In this paper, only the FPE with detailed balance is considered. The extension of 
the present approach to the FPE with non-zero circulation will introduce some essentially 
new points. We will study these matters in future papers. 
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